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Abstract--Hydrodynamic interactions between particles deposited on a solid wall and those free to move 
in a simple shear or a stagnation point flow were studied by the boundary element method. There are 
two effects which can play an important role during deposition, namely: (i) disturbance of the particle 
trajectories by the deposited particles; and (ii) an extra hydrodynamic force on a deposited particle during 
a two-body encounter. The first effect slows down the deposition rate on the collector surface (blocking), 
while the second effect can increase particle removal from the surface. We have shown that hydrodynamic 
effects cannot explain the large blocking effects commonly observed; these must be due to colloidal 
interactions, not included in this paper. However, the force exerted on a deposited particle can be changed 
considerably when a second particle collides with it under purely hydrodynamic conditions. This effect 
is likely to be responsible for the removal of weakly-bound particles. 
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I N T R O D U C T I O N  

The problem of the motion of colloidal particles through a viscous fluid has, over the years, received 
a great deal of attention. This paper deals with problems related to particle deposition on surfaces 
and addresses the problem of non-linear kinetics, which is still poorly understood. However, some 
results may be of interest for the analysis of rheological properties, epecially in the wall region of 
a suspension. 

It is widely accepted that the motion of colloidal particles is governed by the linearized 
steady-state Navier-Stokes equations. The fluid is assumed to be incompressible and Newtonian. 
But even adopting these simplifications, the equations have been solved in an analytical manner 
for only a limited number of systems with simple geometries. The famous Stokes (1851) solution 
for a sphere in a uniform flow is an example. Other solved problems of low Reynolds 
hydrodynamics are extensively discussed in books by Happel & Brenner (1965) and van de Ven 
(1989). Progress in the analysis of the flow equtions for a single sphere in the vicinity of a solid 
wall made it possible to calculate the flux of colloidal particles to a variety of collectors, such as 
the rotating disk (Spielman & Fitzpatrick 1973; Dabros et  al. 1977; Dabros & Adamczyk 1979), 
the spherical collector (Prieve & Ruckenstein 1974; Adamczyk & van de Ven 1981b) and flat and 
cylindrical channels (Bowen & Epstein 1979; Adamczyk & van de Ven 1981a etc.). 

The theoretical predictions were tested experimentally and, in many cases, a satisfactory 
agreement was noted (Dabros & van de Ven 1983; Adamczyk 1989a, b). However, it should be 
borne in mind, that the theory neglects interparticle interactions of any kind, not only in the 
solution, but also in the interface region. It can be shown that for a sufficiently dilute dispersion, 
when particle-particle interactions in the bulk are negligible, interactions between flowing and 
deposited particles in the interface region can still be significant, even for small coating densities. 
In other words, the dispersion near the interface is no longer "dilute". 

Interactions between deposited and flowing particles are responsible for all kinds of blocking 
effects and structuring of the deposit (Adamczyk 1989a, b). The description of hydrodynamic 
two-sphere interactions near an interface is in its early stage of development. In recent years a 
number of numerical techniques have been suggested to deal with related problems, the most 
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important ones being: (i) the method of reflections; (ii) the boundary collocation truncated series 
solution; (iii) the finite element method; (iv) the singularity method; (v) the boundary element 
method (BEM); and (vi) the multisubunit method. A short review of the first five methods can be 
found in a recent paper by Hsu & Gantos (1989) and Weinbaum et aL (1990). The multisubunit 
method was used by Dabros (1989) to study interactions between particles during the deposition 
process at a stagnation point flow collector. Youngren & Acrivos (1975) used the integral equation 
to calculate hydrodynamic forces and torques acting on spheroidal and cylindrical particles in a 
uniform and simple shear flow in an unbounded fluid. The surface of the body was divided into 
elements in each of which the Stokeslets strength was assumed to be constant. By these means the 
problem was reduced to a system of linear algebraic equations with unknown Stokeslets 
distributions. 

Dabros (1985) developed a singularity method based on singular forces and sources situated 
inside each particle. The strength of the singularities was determined from the no-slip boundary 
conditions on the particle surface. 

Other techniques, based on a representation of the Stokeslets distribution by a double series are 
discussed by Hsu & Gantos (1989), where the method was used to calculate the hydrodynamic force 
and torque on an arbitrary body of revolution in the vicinity of a solid wall. An excellent survey 
of recent advances in numerical techniques for solving many-body problems is the book by Kim 
& Karrila (1991). 

We decided to use a BEM similar to the one used to solve many engineering problems (Brebbia 
et al. 1980; Beskos 1987). This method is conceptually simple and complements other techniques 
for solving Stokes flow problems with many-body interactions. Its major advantage is that, for the 
problem of two-sphere interactions near a wall, one can make use of the analytical form of the 
Oseen tensor for a point force near a plane which satisfies the no-slip boundary condition. Since 
only the surfaces of the spheres require discretization, a reduction in the spatial dimension of the 
problem results. A disadvantage of the method is related to the characteristic feature of the 
influence matrix which arises in this method. This matrix is, in general, non-symmetric and fully 
populated, making the use of special techniques available for symmetric or sparse matrices 
impossible. 

The aim of the paper is two-fold. In the first place, we are interested in the non-linear deposition 
kinetics frequently observed in deposition experiments. This is believed to be due to particle 
interactions at the surface which interfere with the deposition process and can result in particle 
detachment. Secondly, we are interested in effective ways of numerically solving hydrodynamic 
many-body problems near a solid boundary. 

METHOD 

In our analysis we adopted the linearized, steady-state Navier-Stokes equation (creeping flow 
equation), which will describe the flow of a Newtonian, incompressible fluid: 

~V~v = Vp [1] 

and 

V . v  = 0, [2] 

where v(x) is the fluid flow velocity at point x,/~ is the dynamic viscosity of the fluid and p is the 
pressure. We will study the zero Reynolds number (Re) hydrodynamic interactions between two 
similar spherical particles of radius a. Let us consider the case when the system is bounded by a 
stationary solid surface W and let v°(x) denote the fluid flow field in the absence of the particles. 
The velocity v°(x) itself has to fulfill [1] and [2] with the no-slip boundary conditions on W. 

The Green's function G(x, y) for the problem will hereafter be called the Oseen tensor. The Oseen 
tensor is assumed to satisfy the boundary conditions G(x, y) = 0 for x E W. The wall W is chosen 
to coincide with the plane z = 0. For such a case, the Oseen tensor can be expressed as the sum 
of two terms 

G(x, y) = G°(x, y) + GW(x, y) [3] 
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where G°(x, y) has the following components: 

1 ( rtry\ 
G°.(x, y) = 6,j + _~z:, [4] 

where r = x - y, r~ are components of r and r = Ir[; 6,7 is the Kronecker unit tensor. Thus, G°(x, y) 
is the ordinary Oseen tensor for an unbounded fluid (Oscen 1927). It should be noted that the tensor 
G°(x, y ) =  G ° ( x -  y) has a singularity as r --* 0. 

The second term on the right-hand side of [3] can be considered as originating from the image 
system of force and source singularities which account for the presence of  the wall in order to fulfill 
the boundary conditions. It has been shown by Blake (1971), that GW(x,y) has the following 
components: 

{ ( r*r*~ . 0 [-hr* :~_~,~+r*r*~l ~ 
1 _ 6 0 + - ~ ) + 2 h r  Jjka--~k~-~--\r , ~-~-]_]j, [5] G ~(x, y) - 8~#r* 

where Jjk = (6jk--26j36k3) is the reflection tensor (w.r.t the plane z =0) .  The vector r* has 
components r* equal to (xl - Yl, x2 - y: ,  x3 + Y3), r* = I r* I and h = Y3. 

The integral solution of  the Stokes equation, appropriate for the case of  two solid particles under 
consideration, takes the form: 

v(x) =v°(x) + ~ fs G(x,y) . f (y)dSy.  [6] 
I=1 i 

In this formula y is a vector pointing to the surface element dSy, f(y) is the force density at y and 
$1 is the surface of  particle l(1 = 1, 2). 

The total force F t and torque T~ exerted by particle l on the fluid are given by the equations: 

and 

F, = fs, f(y) dSy [7] 

( 
T, = | (y - Rt) x f(y) dSy, [8] 

ds ! 
where Rt specifies the position of  the center of  particle/. 

In order to obtain a closed system of equations one must take into account the boundary 
conditions at the particle surface: 

v(x) = u(x) for x e S,. [9] 

The velocity of  the surface point x of solid particle l can be expressed as 

u(x) = u t +  f~t x (x - RD, [10] 

where ul and t2t are the translational and rotational velocities of  particle 1, respectively. 
Equations [6]-[10] form a dosed system of equations, provided that the external force and torque 

or the velocities of  the particles are specified, as well as the external velocity flow field v°(x). 

THE B O U N D A R Y  E L E M E N T  M E T H O D  (BEM) 

Let us assume that the surface of  each particle is divided into Me triangular elements in such 
a way that the surface elements do not overlap and all points of  the sides of  the triangles coincide 
with the sphere surface. We will assume that the two considered spherical particles are discretized 
in a similar way. The surface integrals in [6]-[10] can be expressed by the sums of  the integrals 
over the elements. Taking into account the boundary condition [10], one obtains 

u , +  f l t x  r, = v ° ( x , ) +  k=l#ffil ~ ~ f~ G(xt ,  y ~ ) ' f ( y ~ )  d S , ,  [11] 
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where rl = x t -  Rt, xt and y~ are the surface 
is the number of elements on each surface. 

In a similar way, the forces and torques can be expressed by 

F, = Z f(y~) dS, 
f l = l  ~ 

and 

points of the particles. Indexes l, k = 1, 2, while M~ 

[12] 

J2- 
~41~¢2 OG 8~2' 

"]3 - -  ~X1 63x2 63X2 8Xl [18] 
8G c~G 0G ~42 

~X2 

~42' 
8x3 8x~ 8x~ Ox3 

Integration in the local coordinate system can be performed in a convenient way using the 
standard Gaussian quadratature formulas (Brebbia et al. 1980). In the present paper we adopted 
7- or 25-point formulas to integrate over element surfaces without singularities. If  a singularity 
occurred a special integration formula was adopted, as described in Brebbia et al. (1980). In a 
number of test calculations it was found that, far away from the solid surface, no significant 
difference is noted if the number of integration points is changed from 7 to 25. However, in the 
wall region it was essential to apply the 25-point integration formula. 

The discretization of the particle surfaces is shown in figure 1. We used 32 triangular surface 
elements defined by 6 nodal points in order to approximate the particle shape. The total number 
of nodal points M = 66. The surface area of the particle calculated numerically was approx. 0.7% 
smaller than the surface area of the original spheres, indicating the accuracy of  the surface 
representation by the grid. 

of the coordinates xi and the local variables G, 42: 

8x2 dx3 8xs 
J1 = 

~G ~42 8G 

T~ = ~ [r~ × f(y~)] dSy. [13] 
f l = l  ~ 

In order to evaluate the surface integrals numerically a local coordinate system (¢~, ¢2, G), rather 
than the global Cartesian system (x~, x2, x3), is introduced. In the present paper we have adopted 
triangular elements with 6 nodal points; 3 of them in the corners of each triangle and 3 being 
midside points. The geometry of the system is described by the so-called shape functions N~(G, 42), 
which, in principle, are interpolation functions over an element ~. The surface point y with 
Cartesian components y~(i = 1, 2, 3) can be expressed in terms of the nodal points yT 7 of a given 
surface element ~ (where 7 = 1, 2 . . .  6) and the shape functions in the following manner: 

6 

y , =  ~, N~(¢~, ¢2)y~L [14] 

The six shape functions N ~ are given by 

N 1=¢1(2¢ t -1 ) ,  N 2= 42(2¢2-1), N 3=¢3(2¢3-1) ,  
[15] 

N 4=441¢3, N 5=4¢1¢2, N 6=44243. 

where 43 = 1 -- 41 - 42. 
Similar to Yi, any field variable, e.g. f~(x), can be calculated inside the surface element r :  

6 

f~(x)  = ~ N~(¢,, ¢2)f~;(x(¢~, ¢2)). [16] 
- =  1 

The differentials of the surface dS can now be written as 

dS = IJ [dG d¢2, [17] 

where I JI = (J~ + J~ + J~)~/2 is the Jacobian of the transformation, which can be expressed in terms 
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z 

Figure 1. Discretization of the particle surface. The grid at one-quarter of the upper part of the sphere 
is shown. 

For the purpose of interpolating the force density over the particle surface, all 66 points in test 
calculations and only 18 corner points of every triangle were used in most of the calculations, 
especially for two spheres. The lack of the side points increases the accuracy of the integrations 
in the latter case, so no essential differences were seen if the number of interpolation points was 
decreased. 

Hereafter we will consider two identical spherical particles: one of them free to move and rotate 
due to the action of  the external flow field, forces and torques; the second one will be stationary. 
Substitution of [14]-[17] into [I 1]-[13] result in a system of linear equations of the general form: 

A. b = c. [19] 

Here A is a matrix, the elements of which can be calculated on the basis of [1 I]-[13]. The vector 
c consists of known components corresponding to the external force and torque on the mobile 
particle and 6M components of the external flow velocity at the nodal points of the spheres. The 
unknown vector b includes 6M values of the force density at the nodal points of both particles and 
the 6 components of the translational and rotational velocity of the mobile particle. Details of the 
matrix A and vectors e and b can be found in the Appendix. 

For the two-sphere problem under consideration and M nodal points, [19] is equivalent to a 
system of  6(M + 1) linear equations with the same number of unknowns. The standard Gaussian 
elimination method was used to solve the equations. This yields the 6 components of the 
translational and rotational velocity of the mobile particle, plus the force density f(y~) at each nodal 
point from which the forces and torques on the particles can be calculated from [12] and [13]. 

Before addressing the important problem of two spheres near a wall, we performed test 
calculations for one sphere near a wall and two spheres far from a wall, to ensure that the method 
works well in these two limits. 

RESULTS 

(a) Test Calculations for One Sphere Near a Wall 

The test calculations show that the response of the sphere to a unit force in an infinite fluid is 
0.8 and 0.5% higher than predicted by the Stokes formula for 66 and 18 nodal points, respectively. 
The response to a unit torque was up to 2% higher than expected from the exact solution of  the 
Stokes equation. The deviations are due to imperfections in reproducing the particle shape and 
discretization errors during the numerical treatment of the problem. 
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Figure 2 shows the correction factor f ,  to the Stokes formula for the case when a single sphere 
of radius a approaches the solid wall perpendicularly. Defining the z-axis as normal to the wall, 
the force F~ exerted by the particle upon the fluid is given by 

6nl~au~ 
- - - ,  [201 

where h = z - a. 
The analytical solution of the problem given by Maude (1961) and Brenner (1961) is shown by 

the solid line. As one can see, good agreement exists between the solution calculated with the BEM 
and the exact solution for separations > 5% of the particle radii. For this case it was noted that 
scatter in the results occurred for h < 0.1 if single precision arithmetic or low-order Gaussian 
quadrature was used in the calculations. The results shown hereafter will refer to calculations which 
were done with double precision and 25-point Gaussian quadrature. 

Figure 3 shows the dependence of the normal component of the particle velocity u~ on h/a. The 
particle was placed in a stagnation point flow field: 

v°(x) = (iAxz + jAyz - kAz2), [211 

where i, ], k are unit vectors of the Cartesian system of reference and A is a flow intensity parameter. 
The z-component of velocity is made dimensionless with respect to the fluid flow velocity 
Vofr = - A z  2. As was shown by Goren & O'Neill (1971), the ratio u~/Ve~ is a function of h/a only. 
Again, the solid line was calculated on the basis of the analytical solution of the Stokes equation 
(Goren & O'Neill 1971) and the points were calculated using the BEM. The ratio uz/Veef, by its 
very nature, depends on the friction forces of the sphere approaching the wall and on the 
hydrodynamic forces exerted on a stationary particle by the flow field at a given position. Thus, 
it is not striking that the accuracy of these calculations increases in the same region as those 
presented in figure 2. In order to complete the data on the performance of the method in a 
stagnation point flow, in figure 4 one can see the dependence of the dimensionless coefficient f2 (h/a) 
to the Stokes formula for the normal force exerted by the fluid on a stationary sphere with its center 
at distance z from the wall. These results, as well as others done for simple shear flow and movement 
of the particle tangential to the wall, show that the error of the calculations becomes significant 
at separations < 5% of the particle radius. 

(b) Test Calculations for Two Spheres Far Away from the Wall 

In principle the BEM works for arbitrary distances between the two spheres and the wall. It is 
important to verify that the known solutions are obtained for positions of the spheres far from 
the wall. Here we calculate the drag force on two equal spheres in a uniform flow. Using the same 
distribution and number of nodal points as before we find the force necessary to hold a mobile 
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Figure 2. The drag correction factor f~ for a spherical 
particle moving perpendicularly to the plane wall as a 
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sphere at a given distances from the second particle, placed behind it. The force (having the same 
value for both spheres) can be represented as 

F =  6rc/tau2(r) [22] 

where 2 is the correction function to Stokes flow for a single sphere due to the presence of the 
second one. The results are presented in figure 5, which shows the comparison with the exact 
solution. In all cases the difference is <0.5%, including in the limit r--.2. 

(c) Hydrodynamic Interactions Betweeen Two Particles Near a Solid Plane 

When considering the deposition process, two effects have to be taken into account when the 
coating density at the solid surface is increasing: (1) the influence of the deposited particles on the 
flow pattern of the solution; and (2) the influence of the flowing particles on the hydrodynamic 
forces exerted by the fluid on a deposited particle. The first effect is responsible for all kinds of 
blocking effects. The second effect can result in detaching the deposited particles, if they are not 
adhered strongly enough to the collector surface (Varennes & van de Ven 1987). Particle blocking 
and detachment are responsible for the non-linear deposition kinetics frequently observed. The 
present method yields quantitative insight into both phenomena. Having data on the instantaneous 

4 . 0 '  

,-. 3.5. 

i 3.O: 
2.5 

2.0. 

1.5. 

1.0 ! I 
5E-2 I E - I  I 10 

dimensionless separation h/a 

Figure 4. Drag correction factor f~ for a stationary particle in a stagnation point flow as a function of 
the particle-wall dimensionless separation h/a. f~ = F=/6n~Aa2z 2, where F= is the normal component of 

the force, A being the flow intensity parameter• 
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Figure 5. Drag correction for two equal spheres aligned in a uniform flow as a function of center-to-center 
distance. 
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Figure 6. Trajectories of  free particles in a stagnation point flow. The starting position of  the particle is 
xi, 4, 18), where xl = 0, 0.1, 0.2, 0.4 and 0.8 for curves 1-5, respectively. The deposited particle is located 
at (0, 20, 1.1). [] show instantaneous positions of  the particle center for a constant time interval. ~ show 
the same for the case when the deposited particle is not present. Retardation of  the movement is evident. 

velocity of the particle it is possible to trace its trajectory in a given flow field. At any instant one 
can calculate the force and torque necessary to keep the stationary particle at a given position. In 
the present paper we will consider the case when the mobile particle moves freely, so no external 
force or torque is imposed on it. Thus, only hydrodynamic interactions are accounted for. Two 
external flow fields will be considered: (i) the stagnation point flow; and (ii) the plane, simple shear 
flow. 

(i) Stagnation point flow 

The flow field for this case is given by [21]. In what follows the position vectors are made 
dimensionless w.r.t, the particle radius a, all velocities are normalized by Aa 2 and all forces are 
made dimensionless to 6n#Aa3; A being the flow intensity parameter. Time is scaled by 1/aA. 

The stationary particle is placed at point (0, 20, 1.1). The finite distance from the wall was chosen 
to ensure the accuracy of the calculations, however no substantial differences are expected if the 
stationary particle sticks to the wall. If  the freely mobile particle is far away, we calculate that the 
dimensionless hydrodynamic force exerted on the attached particle has components (0, 35.66, 3.55). 
Comparing these values with exact ones (Goren & O'Neill 1971), one can estimate the error of the 
calculations as 0.8%. 

The freely mobile particle can be set at a given initial position and its trajectory as well as the 
forces on the deposited particle can be traced. Figure 6 shows the trajectories of the mobile particles 
starting at (x i, 4, 18), where xi = 0, 0.1, 0.2, 0.4 and 0.8. For comparison, the undisturbed trajectory 
at the symmetry plane in the absence of the deposited particle is shown as well. To avoid particle 
overlap, the free particle is pushed upwards in the collision region, but afterwards it apparently 
returns to the original trajectory. The squares and triangles in figure 6 show the loctions of the 
particles with time steps equal to 0.02. In this example the only persistent effect of the collision 
is a retardation of the flowing particle in its movements. 

More pronounced effects are noted when the forces necessary to keep a stationary particle in 
a given position during the collision are considered. Figure 7 shows how the force components vary 
when the flowing particle passes by. For small separations the attached particle is pushed toward 
the wall or pulled away from it, depending on whether the freely mobile particle is in front or behind 
it. These results are in quantitative agreement with data shown by Dabros (1989), where 
calculations were done using the multisubunit method; however, only results for given two-particle 
configurations were presented. 
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Figure 8. Force components acting on a particle deposited 
at (0, 100, 1.1) as a function of  the y-coordinate of  the 
flowing particle. Initial positions of  the flowing particle are 
(x~, 84, 4.28) for the 5 curves (ranging from solid to dotted 

lines). The force is made dimensionless w.r.t. 67tp.a3A. 

Figure 8 shows the variations in the force components exerted on a stationary particle placed 
further away from the stagnation point (y = 100) when the free particle flows by. The starting 
position of the particle was the same as in the case discussed above. The relative variations in the 
tangential force are not as big as they are for the normal force. The tangential force increases when 
the free particle is in front or behind the deposited one. When it is straight above it, a local 
minimum appears. 

The dependence of the torque on a stationary particle on the position of a flowing one is more 
complicated and even less pronounced than for the tangential force, except for configurations when 
the particles get very close to each other. Then the torque increases considerably. 

(ii) Simple shear flow 
The calculations were done for a plane, simple shear flow given by 

V°x=0, 0_  0 0. [23] V y  - -  Z ,  U z 

In this case, all velocities and forces were normalized w.r.t. Ga and 6rc#a2G, respectively. The 
time is scaled by G - ~. Figure 9 shows how the components of the force vary when the free particle 
is in the vicinity at a given separation from the wall. Figure 9 presents data for particular 
configurations of the two spheres only: in all cases the z-component of the first particle is kept 
constant at 1.4. The open triangles in figure 9 show results obtained by the multisubunit method 
described by Dabros (1989). Good agreement is noted for separations larger than a fraction of the 
particle dimensions. 

Figure 10 shows the trajectories of a freely mobile particle and figure 11 the tangential and 
normal force components on the immobile particle for the case when the free particle, originally 
placed at point (x;, - 8 ,  3. I), where xi = 0, 0.5, 1.0, 2.0 and 4.0, passes by the stationary one located 
at point (0, 0, 1.1). 

As one can see, for a simple shear flow also the free particle can considerably influence the force 
exerted on a stationary particle. 
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Figure 12 shows how the force varies for different initial particle wall separations o f  the freely 
mobile particle. 

D I S C U S S I O N  A N D  C O N C L U D I N G  R E M A R K S  

The BEM described in this paper  proved to be useful for the analysis o f  hydrodynamic  
interactions between two particles in the vicinity o f  a solid wall. The calculations were done for 
a quiescent fluid and for  two external flows; namely, for the stagnation point  flow and for  the plane, 
simple shear flow. In order  to speed up the calculations, in mos t  cases 32 surface elements were 
used to approximate  the spherical shape o f  the particles and 18 nodal  points were applied for the 
force density approximat ion.  The accuracy of  the method  turned out  to be o f  the order  o f  1% when 
the particles were more  than 10% of  the particle radius away f rom the surface and apar t  f rom each 
other. In  the wall region, fairly accurate results were obtained even below 10% of  the particle 
radius. However ,  in such a case double-precision arithmetic and high-order  Gaussian quadra ture  
had to be used. 

In  principle, the BEM can be made  as accurate as one wishes at the expense o f  comput ing  time. 
The presented algori thm was not  optimized by using, for example, adaptive grids or  Gaussian 
quadra ture  order. Compared  to other  methods  which have been or  can be used to analyze similar 

1 

32 

× 

Figure 10. Trajectories of the freely mobile particle in a simple shear flow, initially located at (x~, - 8, 3.1), 
where x~ = 0, 0.5, 1, 2 and 4 for curves I-5, respectively. The deposited particle is located at (0, 0, 1.1). 
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problems, the BEM proved to be somewhat more accurate than the singularity (Dabros 1985) and 
the multisubunit methods (Dabros 1989) in the wall region. However, it is much slower, especially 
compared to the latter method. The boundary integral method (Hsu & Gantos 1989), used for 
studying the hydrodynamic interactions in the wall region of  non-spherical particles, gave correct 
results for separations of  the order 1/10 of  the particle dimensions. It is not immediately obvious 
how the method would perform for two particles. The combination of  the reflection method with 
lubrication theory, as presented in Malysa et al. 0984), is another promising alternative--in view 
of  successful applications of  a similar approach in the case of  an unbounded fluid (Durlofsky & 
Brady 1987). 

The method presented here can be useful for the analysis of  the behavior of  particles in colloidal 
systems, except for specific situations in which the colloidal interactions are of  too short a range. 

Results for two particles in a stagnation point flow are consistent with data obtained by a 
different method (Dabros 1989). The trajectory of the free particle was traced and a strong 
hydrodynamic interaction with the deposited particle during a "collision" was noted. This type of  
interaction is likely to be responsible for removal of  weakly-bound particles, which were observed 
to detach faster when subjected to surface collisions (Varennes & van de Ven 1987). These 
experimental observations were for 3 #m spheres subjected to wall shear rates in the range 
100-1000 s-L According to figures l l and 12, the normal force acting on a deposited particle is 
about 1.27r#Ga 2. The adsorption energy is usually in the range 1-20 kT. For  an energy of/~ kT, 
the critical shear rate at which particles are removed "instantaneously" from the surface during 
a surface collision is G~t - ]~ kT/1.27rga2h, where h is the distance at which the bond between the 
particle and the wall is broken. For ]~-~ 10, h ___Snm and a = 1.5#m, G~,t ~ - 1000s-L This 
corresponds closely to the observed extrapolated shear rate (G~., --- 1650 s- ~ ) at which the escape 
time approaches zero. At lower shear rates, surface collisions result in an appreciable reduction 
in the escape time (equivalent to the average lifetime of  a particle on the surface). At shear rates 
one-tenth of  Q, t ,  surface collisions can reduce the escape time from 300 to 40 rain. In general, the 
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Figure I 1. Force components acting on the deposited par- 
ticle as a function of the y-coordinate of the flowing particle. 
The - -  , and .... curves correspond to 
trajectories '1-5 in figure 10, respectively. Forces are made 

dimensionless w.r.t. 6npa2G. 
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Figure 12. Force components acting on the deposited par- 
ticle located at (0, 0, 1.1) in a simple shear flow as a function 
of the y-coordinate of the freely moving particle initially 
located at (0, -8,  z~), where z i is equal to 2.8, 3, 3.5, 4 and 
8 for , , , and curves, respectively. 

The force is made dimensionless w.r.t. 6~paZG. 
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normal hydrodynamic force can be important for micron-sized particles at shear rates above 
100 s -1. For smaller particles or adsorbed macromolecules, this force appears to be too weak to 
affect the detachment kinetics. 

In the absence of colloidal interparticle forces, disturbances of the free particle trajectory are 
evident only in the collision region. Such disturbances are unlikely to be responsible for extensive 
blocking effects. It appears that colloidal forces between freely mobile and immobilzied particles 
are mainly responsible for the large blocking effects observed experimentally. These effects are 
presently being investigated. 
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APPENDIX 

Equation [19] can be rewritten in the following form: 

AI,3M iOi 0 

3 A 6,3M 
A ~,~,6~ . . . . . . .  

0 
fJM 

u~ 

[A.1] 

The components of the vector of unknown values in [A.1] are: 

(i) 3M force components acting at M nodal points of the first (mobile) sphere 
f~M = (9ci, ~ l ,  ~to~ . . . . .  ~f~), 

(ii) 3M force components acting at the nodal points of the second (stationary) 
sphere f2  M = (yll, y l  y~ . . . . .  y ? ) ;  and 

(iii) three translational and three rotational velocity components of the first particle 
denoted by u I = (lu Z , lu2, lu 3, ICOl, Ico2, 1co3). 

The right-hand side vector of [A. 1] consists of: 

(i) three components of the force and three components of the torque acting on 
the first partice F~ = (~F1, iF2, IF3, ITl, 1T2, IT3); 

(ii) 3M components of the external fluid velocity at nodal points of the first particle 
V~M; and 

(iii) 3M components of the external fluid velocity at nodal points of the second 
particle, V~M. 

The elements of matrix A are derived from [11]-[13] making use of [14], [16] and [17]. 
The first three rows of the submatrix A 6~.3~ can be found from [12], which can be, more explicitly, 

rewritten in an index form as 

~ ~'~ f~ N~(th, ~h)[J[ d~/, dt h = ~F,., [A.2] 
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where ~Fi is the i(i = 1, 2, 3) component of  the external force acting on the mobile particle and tf~ 
is the component of  the force density at the node ~ of  the surface element/3 of  the particle. N ~ 
and ]Jr are the shape function and the transformation Jacobian, respectively. The sum of  integrals, 
appearing in the equation, over the ? index is equal to the corresponding coefficient of the 
submatrix. 

The next three rows of  the submatrix can be determined in a similar fashion from [13], which 
can be written as 

fk@krj N~(th, th)Nffth, ~2)lJ[ d~, dr h = 'T~, [A.3] 

where i , j , k  = 1, 2, 3 and ~, d, ~ depend on the order of the interpolation function Nffr/l, rh); r~ 
is the j component of  the local vector pointing from the center of the particle to the nodal point 

; e~k is the fully antisymmetrical tensor. Elements of  the submatrix 2 A 6M.6M are calculated from [11], 
which can be written for 2M nodal points x of both spheres: 

_ y, nf; f G0(x ' y(r/l, t/E)NrlJI d~h dth + nu, + g~knOgirk = V°(X), [A.4] 
jkn,S7 JP 

where n = 1, 2, i, j, k = 1, 2, 3 and "Uk and "~k are the components of  the particle translational and 
angular velocity, equal to zero for the second particle. 

The integrals appearing in [A.2]-[A.4] were calculated by the Gauss method of  integrating over 
triangular surface elements. If  the nodal point belongs to the element over which integration is 
carded out a special method has to be used, as indicated in the text, to minimize the errors. 

The submatrices under consideration are determined by values of the integral over the surface 
elements to which the nodal points belong. It is thus necessary to define a grid structure of the 
nodal points distributed over the surfaces. 

The submatrix d 33 M is related to the last two terms of the left-hand side of [A.3]. Elements of 
the first three columns of the submatrix are equal to 6i~ (6ij being the Kronecker delta), where i 
indicates the actual component of the external velocity in the matrix row and j is the submatrix 
column index. 

The last three columns of the submatrix are equal to Y'k %k rk, where k = l, 2, 3. In this case i 
has the same meaning as previously and j indexes the last three columns of the submatrix A 63,3M. 


